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Abstract— Computerized microscopy image analysis 
plays a crucial role in computer aided nuclei 
segmentation/diagnosis. Machine learning methods have 
emerged as a powerful tool in medical investigation and 
clinical practice. Recently studies have been conducted on 
training neural networks utilizing large datasets of Red, 
Green, Blue (RGB) images to produce segmentations of 
nuclei on human tissue. This has attracted considerable 
attention in the biomedical informatics industry as these 
large datasets are difficult to acquire and validate. This 
study provides an analysis of the differences in nuclei 
segmentation of human tissue using RGB images and 
Hyperspectral images (HSI) using the UNET Convolutional 
Neural network architecture. We introduce the popular 
neural network specifically designed for biomedical 
segmentation problems and we summarize current deep 
learning achievements in tasks such as detection and 
segmentation. The results of this research qualify the 
potential usage of hyperspectral imaging to improve the 
quality of neural network segmentations given a smaller 
dataset of HSI volumes. We explain the network 
architecture, the principles of the convolutional neural 
network and describe how we were able to improve its 
efficiency and accuracy. In addition, we discuss the 
challenges and the potential trends of future research in 
biomedical image analysis using machine learning methods. 

 
 

I. Introduction 
The cells presented in Figure 1 are very similar in visual 
appearance and structure. However, there are microscopic 
differences that occur in benign cells and malignant cells, which 
can be exploited to differentiate and diagnose the cell types and 
their properties to be cancerous. Considerable academic study 
is required for pathologists to become proficient in 
identification of cancerous cells. However, due to human error, 
false diagnoses can be made [1]. With new machine learning 
methods of segmenting nuclei in images of human tissue, 
diagnosis time can be expedited with increased accuracy and 
efficiency [2][3]. 

 

 

    The findings presented in this study will improve nuclei 
segmentation of pathological images for cancer detection with 
precision and accuracy under a few seconds utilizing machine 
learning methods. Current methods of segmentation utilize 
RGB images which consist of 3 color channels: Red, Green and 
Blue (broad wavelengths centered at 630 nanometers, 535 
nanometers, and 435 nanometers) [5][6]. This research 
proposes an alternative method of training neural networks 
using Hyperspectral imaging (HSI). Hyperspectral image 
volumes from a microscope contain multiple color wavelengths 
with narrow bands in the electromagnetic spectrum from 400-
1000 nanometers. Such images are utilized in aerial 
photography, astronomy, and agriculture because they allow 
specific data about the chemical makeup of a subject to be 
identified [7][8]. This study proposes the application of this 
imaging system to the semantic segmentation process of nuclei 
for cancer detection. HSI images allow specific chemicals and 
cell structure to be identified in the cell, creating a larger range 
of data for the network to train on [9]. The images are captured 
from a hyperspectral-capable microscope and cannot be viewed 
directly on a computer screen (unless they are modified to Red, 
Green and Blue bands) as common displays are not capable of 
displaying images with more than three channels Figure 2. 
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Figure 1. Benign vs. Malignant Tumors  
Source: Adapted from [4] 
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II. Neural Network Architecture 
The Universal Network Architecture was utilized in this 

study because it was developed specially for biomedical image 
segmentation problems [11]. The first half comprises of a 
feature contraction path to apprehend details and the second 
half, an expansive path to obtain precise location details. The 
contracting path follows the typical architecture of a 
convolutional network. It consists of the repeated application of 
two 3x3 2D-convolutions (unpadded convolutions), each 
followed by a dropout to prevent overfitting. A rectified linear 
unit (ReLU) follows with a 2x2 max pooling operation with 
stride 2 for down-sampling. At each down-sampling step we 
double the number of feature channels. The expansion process 
is executed with transposed convolution kernels shrinking 
feature map numbers and enlarging the dimensions of the 
image. The maps of features from the contraction process are 
concatenated with the expansion path layers to reduce pattern 
detail loss. A 1x1 convolution is then applied to produce a 
segmented image. The output from the neural network is a 
probability mask of the locations of nuclei within the image. 

III. Image Preparation 

  

 

 
 
Controlled testing was required to compare maximum 

accuracy for the RGB and HSI dataset. To obtain ground truth 
masks, RGB fields (Figure 3b) were manually annotated and 
validated using the Label-Studio software (Figure 3a). Each 
RGB tissue field had a replica in the Hyperspectral data format, 
so the same masks were used for both imaging types. Each 

tissue field was 966x606 pixels from the prostate but were 
cropped to smaller patches to improve training efficiency. 

The spectral python package enabled specific bands to be 
extracted from the entire data cube. Bands that contained pixels 
majorly representative of connective tissue were not selected to 
train on because chemical structure of nuclei were invisible. 
Without nuclear structure data, network quality will decrease. 

Various dimensions of the UNET architecture were tested 
with the following patch sizes (length in pixels × width in 
pixels): 128×128, 256×256, and 512×512. 64×64 patch sizes 
rendered the field of view too small for the network to detect 
individual instances of nuclei and 1024×1024 yielded the issue 
of not enough training data as the fields were only 966×606.  

The third dimension of an image represents the number of 
bands (color channels) in the image. The HSI model was 
trained using the HSI images with 1 to 12 color channels to test 
improvement compared to the RGB model with 3 color channel 
images.  

Each image was input as multi-dimensional Tensor of 64-bit 
floating point numbers. Figure 5 contains examples of 
hyperspectral images, (Figure 4a) RGB images (Figure 4b), and 
their corresponding ground truth mask (Figure 4c). 

 

 
IV. Network Training 

The network was initially trained with 128×128, 256×256 
and 512×512 patches of the tissue fields to test overfitting on 
different datasets. After training on RGB and 3-band HSI 
images for 25, 30, and 50 epochs, it was determined that 
512×512 patch sizes were the most efficient, had less 
overfitting, and provided the highest average IoU (Eq. (1)). 
128×128 and 256×256 patch sizes cropped out individual 
nuclei within the patch and caused the network to have a 
compromised training dataset. 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁	(𝟏) 
Where TP=True Positive; FP=False Positive; FN=False Negative; 

 
Different dataset sizes were tested from 5 fields to 85 fields 

to test the effect of data size on model accuracy. In practice, 
large datasets are difficult to acquire and require vast amounts 

 

Figure 4. Single band HSI image, RGB image, and 
ground truth examples [HSI image example(left). 

Corresponding RGB image(middle). Corresponding 
ground truth (right)] 

a: Manually annotated ground 
truth mask(grayscale) 

(a) 

b: Corresponding cell field 

(a) (c) 

 

(b) 

Figure 2. Hyperspectral image example  
Source: Adapted from [10] 

 
 

Figure 3. Annotated ground(left) truth with corresponding 
cell field(right) 



of time to annotate and validate. Therefore, if HSI provides 
comparable accuracy to the RGB model trained on a smaller 
dataset, it would prove to be a more efficient use of training 
resources. 

To prevent testing the network on known images, the batches 
were split by 80% training and 20% testing. The model’s 
optimizer was Adam, as it is an extended form of stochastic 
gradient descent and is commonly utilized in computer vision 
models [12]. The loss function this research utilized was binary 
cross entropy [13]. 

The network was allowed to train for a maximum of 200 
epochs but had a check-pointer to monitor validation accuracy 
and saved the model with the highest validation accuracy to 
prevent overfitting. After training, the mean IoU and F-score 
(Eq. (2)) was calculated for all testing images in the dataset. 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁		(𝟐) 
 

 

V. Results 
With a dataset of just 5 fields, the HSI model achieved 75% 

IoU and 85% F-score with 10 color channels. With a dataset of 
5 fields, the RGB dataset achieved 66% IoU and 80% F-score. 
Both training methods caused saturation in training loss and 
validation loss as epochs increase (Figure 5). As the dataset size 
increased, both models achieved an accuracy of 81% when 
trained on 45 fields. 

 
 
 

The maximum IoU achieved from the HSI dataset was 81% 
and an F-score of 91% when trained on 36 fields with 10 color 
channels. The RGB segmentation model produced a maximum 
IoU of 81% and a maximum F-score of 90% when given a 
dataset of 45 fields. IoU and F-score saturated as the number of 
training fields increased. 

Predictions from both RGB and HSI models with the highest 
average IoU are displayed in Figures 6a and 6b. They are 
overlayed on RGB images for ease of viewing. The predictions 
were processed through a function to extract the contours of the 
nuclei to represent the morphology of the nuclei distribution 
using white lines. The RGB model predicted nuclei as 
interconnected, and the centroids are not individually depicted 
(Figure 6a). In the HSI segmentation, these faults are less 
prevalent and there are more distinct nuclei predicted in the 
patch of tissue (Figure 6b).  

Figure 7a is the RGB version of the input image and Figure 
7b is the ground truth mask. Figure 7c and 7d are corresponding 
predictions from the HSI model, and RGB model when trained 
on 5 fields. The predictions from the Hyperspectral model 
(Figure 7c) are made with a higher confidence interval, are less 
connected, and have less noise compared to the predictions 
made by the RGB model (Figure 7d). 

 
 

 

 

 
 

 
Figure 7. Examples of RGB and HSI predictions 

compared to corresponding ground truth 
 

Figure 5. Training and Validation loss curves while 
training for 200 epochs 

Figure 6. RGB vs. HSI prediction contour overlayed on 
RGB test image. 

 

a: RGB segmentation b: HSI segmentation 

c: HSI segmentation d: RGB segmentation 

a: RGB version of input image b: True mask 



Different HSI datasets were trained on with 2 to 12 color 
channels. Each patch was 512×512 to maximize IoU as 
described in Section IV. When training, the same automatic 
maximum callback method was used to prevent overfitting. The 
training epochs ranged from 15-105 epochs according to the 
number of color channels per image (more color channels 
required more epochs). The IoU threshold peaked at 80.9% as 
depicted in Figure 10 and F-score peaked at 91% with 10 color 
bands with 105 epochs of training. As number of color channels 
increased after 10, IoU decreased, indicating training 
saturation. 

 
 
 

VI. Conclusion and Future Work 
All the testing in this study proves that Hyperspectral images 

improve the accuracy of a neural network model for nuclei 
segmentation when the given dataset limited in size. As the 
number of color bands increases, there is an increase in 
segmentation accuracy until a point of overfitting. The model 
trained on hyperspectral images provides a segmentation of 
higher quality compared to the model trained on RGB images. 
It distinguishes individual nuclei separately and with a higher 
confidence interval, whereas the RGB model depicts separate 
nuclei as connected and with a low confidence interval. The 
Hyperspectral model also provides a segmentation that is less 
noisy and is visually cleaner for a pathologist to use in practice. 

 Methods such as unsupervised learning, or active learning 
can be employed in the future to train on larger data size without 
ground truth masks. Unsupervised learning will enable the 
neural network to learn patterns in an image without the need 
for ground truth masks, which will allow it to recognize specific 
cell structure based on different chemical signals from the 
hyperspectral images. Active learning, when implemented in 
the future with hyperspectral imaging, can allow a pathologist 
to work alongside a neural network in a collaborative manner 
to train the network on specific classification problems. The 
network will prompt a pathologist to verify its segmentation, 
and when prompted with a validation accuracy, it will continue 
its back-propagation methods. A Multi-Dimensional UNET can 

also be used, as it allows for more efficient training on a large 
volume image (60 or higher color channels). 

This research presents an optimistic path for the methods 
used to segment and analyze images in the histopathological 
field of biology with the use of hyperspectral imaging to 
increase the number of color channels in a training dataset. The 
ability to discern different biological structures in a cell based 
on multiple color channels in the electromagnetic spectrum 
proved to increase the quality of neural network output.  
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Figure 8. Graph of HSI color bands vs. IoU 
score 


